Menu UF Health Home Menu

Former grad student, Dr. James Graham publishes in Dec 2016 PLoS One

Published: January 25th, 2017

Category: News Updates

Graham JB, Muir D. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve. PLoS One 2016; 11(12):e0167682.

The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs) are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG’s glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase). The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections) show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding epineurium. Interestingly, chondroitinase ABC treatment increased greatly the growth-promoting properties of the epineurial tissue whereas chondroitinase C had little effect. Our evidence indicates that chondroitinase C effectively degrades and inactivates inhibitory CSPGs present in the endoneurial Schwann cell basal lamina and does so more specifically than chondroitinase ABC. These findings are discussed in the context of improving nerve repair and regeneration and the growth-promoting properties of processed nerve allografts.