Adam J Woods, Ph.D.
Associate Dean for Research, College of Public Health and Health Professions
About Adam J Woods
Dr. Woods is Associate Dean for Research in the College of Public Health and Health Professions at the University of Florida. He is also Co-Director of the Center for Cognitive Aging and Memory (CAM) in the McKnight Brain Institute and a Professor in the Department of Clinical and Health Psychology. Dr. Woods completed a post-doctoral fellowship in Cognitive Neuroscience at the University of Pennsylvania after completing his PhD in Cognitive Neuroscience at George Washington University. His undergraduate training in Psychology was completed at the University of Alabama at Birmingham. He has expertise in non-invasive brain stimulation, neuroimaging, and cognitive training for working memory and speed of processing/attention. He is a national leader in the field of neuromodulation, leading the largest transcranial electrical stimulation (tES) and near infrared photobiomodulation trials to date, multiple cognitive training trials, publishing the first comprehensive textbook in the field of tES, and multiple field standards papers. Dr. Woods’ research specifically focuses on discovery and application of novel non-invasive interventions for enhancing cognitive function in adults with and without neurodegenerative disease. Dr. Woods has expertise in multi-disciplinary cognitive neuroscience methodologies (MRI/fMRI, electrophysiology, non-invasive brain stimulation), extensive experience with aging-related cognitive disorders, cognitive training applications, and past research with neurological diseases. Over the past ten years, Dr. Woods has established one of the largest and most well-funded neuromodulation laboratories in the United States. His lab is currently funded by four active NIH/NIA R01s. He was PI of the first and largest phase III RCT for tES using transcranial direct current stimulation (tDCS) and cognitive training, the ACT study (R01AG054077, n=360). He is currently PI of the largest phase II near infrared photobiomodulation trial (R01AG064587, n=168), and an artificial intelligence and precision dosing computational project that seeks to develop a novel brain-specific precision medicine approach to transcranial electrical stimulation treatment approaches (RF1AG071469). He also serves as site PI on two large clinical trials testing efficacy of cognitive training approaches in adults with and without mild cognitive impairment: the PACT and ACTIVE MIND Trials (R01AG070349, R01AG075014). In addition, Dr. Woods serves as an MPI for an NIH/NIA pre-doctoral T32 training grant focused on providing research training in non-pharmacological interventions for cognition in aging, MCI, and Alzheimer’s disease (T32AG020499).
Accomplishments
Teaching Profile
Research Profile
Pathways of Prevention in Cognitive Aging & Dementia using Neuromodulation: Cognitive function declines as we age. As our thinking and memory skills decline, the rate of functional dependence, mortality, and acute illness requiring hospitalization increases. Increased rates of cognitive and functional decline associated with dementia represent a growing concern considering our rapidly aging population. There is currently a paucity of effective treatments for preventing dementia or recovering age-related cognitive decline. A variety of methods have been proposed to counteract cognitive aging and/or slow onset of dementia (e.g., cognitive training). Unfortunately, these techniques have limited degrees of success and transfer to everyday life. My work demonstrates that combining treatments like cognitive training with non-invasive brain stimulation (tDCS, TMS, tACS) facilitates neural plastic response, improves cognitive abilities (specifically working memory, attention, and speed of processing), and leads to long-term improvement. In combination with modern multimodal neuroimaging, artificial intelligence, and electrophysiology recording, this work not only identifies mechanisms underlying improvement, but also provides information important for further optimizing treatment effectiveness. This work has led to funding of the largest and first Phase III randomized clinical trial for tDCS as an adjunctive method with cognitive training to remediate cognitive aging and potentially prevent dementia onset. In addition, my lab is funded to investigate mobility enhancement in older adults, treat chronic knee osteoarthritic pain, and enhance working memory function using a variety of non-invasive electrical brain stimulation methods in Phase II trials. At present, my lab maintains over 17 million dollars in active NIH funding to investigate non-invasive brain stimulation and other neuromodulation-based preventative interventions. Collectively, my work aims to slow the effects of cognitive aging and slow the onset of dementia using non-invasive and minimally invasive approaches. At present, a major focus in my lab uses machine learning and other artificial intelligence approaches paired with multimodal imaging, behavior and clinical variables/outcomes to identify novel pathways to precision dosing/medicine applications of non-invasive brain stimulation methods in patient populations and predict neurodegenerative disease onset.
- Alzheimer’s Disease
- Attention
- Clinical Translational Neuroscience
- Cognitive Aging
- Cognitive Neuroscience
- Dementia
- MR imaging
- Neuroimaging Methods
- Neuromodulation
- Neuroplasticity
- Non-invasive Brain Stimulation
- Speed of Processing
- Working Memory
Publications
Grants
Education
Contact Details
- Business:
- (972) 883-2355
- Business:
- ajwoods@phhp.ufl.edu
- Business Mailing:
-
PO Box 100196
GAINESVILLE FL 32610 - Business Street:
-
1225 CENTER DR
GAINESVILLE FL 32610